Time - Frequency Learning Machines

نویسندگان

  • H. Bölcskei
  • R. W. Heath
  • A. J. Paulraj
  • G. B. Giannakis
  • K. J. R. Liu
  • J. K. Cavers
  • B. Yang
  • K. Ben Letaief
  • R. Cheng
  • I. Kang
  • M. P. Fitz
  • S. B. Gelfand
  • M. C. Vanderveen
  • Y. Li
  • L. J. Cimini
  • O. Edfors
  • M. Sandell
  • J. van de Beek
  • K. S. Wilson
  • M. K. Tsatsanis
چکیده

Over the last decade, the theory of reproducing kernels has made a major breakthrough in the field of pattern recognition. It has led to new algorithms, with improved performance and lower computational cost, for nonlinear analysis in high dimensional feature spaces. Our paper is a further contribution which extends the framework of the so-called kernel learning machines to time-frequency analysis, showing that some specific reproducing kernels allow these algorithms to operate in the time-frequency domain. This link offers new perspectives in the field of non-stationary signal analysis, which can benefit from the developments of pattern recognition and Statistical Learning Theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...

متن کامل

Two meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning

This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007